Most of the conventional computer models are based on the von Neumann computer architecture and the Turing machine model. However, quantum computers (several versions!), analog computers, DNA computers, and several other exotic models have been proposed in an attempt to deal with intractable problems. We are going to give a brief overview of different computing models and discuss several classes of optimization problems that remain very difficult to solve. Such problems include graph problems, nonlinear assignment problems, and global optimization problems. We will start with a historical development and then we will address several complexity and computational issues. Then we are going to discuss heuristics and techniques for their evaluation.

Panos M. Pardalos serves as Distinguished Professor of Industrial and Systems Engineering at the University of Florida. Additionally, he is the Paul and Heidi Brown Preeminent Professor in Industrial & Systems Engineering. He is also an affiliated faculty member of the Computer and Information Science Department, the Hellenic Studies Center, and the Biomedical Engineering Department. He is also the Director of the Center for Applied Optimization. Dr. Pardalos is a world leading expert in global and combinatorial optimization. His recent research interests include network design problems, optimization in telecommunications, e-commerce, data mining, biomedical applications, and massive computing. Dr. Pardalos won numerous awards including the 2013 Constantin Carathéodory Prize, and the 2013 EURO Gold Medal. He is a foreign member of several academies of sciences, and he is a Fellow of AAAS, INFORMS, EURO, and AIMBE.